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Abstract. Microstructured optical fibres (i.e. fibres that contain holes) have assumed a high profile in recent
years, and given rise to many novel optical devices. The problem of manufacturing such fibres by heating and
then drawing a preform is considered for the particularly simple case of annular capillaries. A fluid-mechanics
model is constructed using asymptotic analysis based on the small aspect ratio of the capillary. The leading-order
equations are then examined in a number of asymptotic limits, many of which give valuable practical information
about the control parameters that influence the drawing process. Finally, some comparisons with experiment are
performed. For a limited set of experiments where the internal hole is pressurised, the theoretical predictions give
qualitatively accurate results. For a much more detailed set of experiments carried out with a high-grade silica
glass where no hole pressurisation is used, the relevant asymptotic solution to the governing equations is shown to
give predictions that agree remarkably well with experiment.
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1. Introduction

In this study, we discuss models relevant to the drawing of optical fibres that contain holes.
Our motivation is the existence of a new and important class of optical fibres that has re-
cently achieved increased prominence: the microstructured fibre. The transverse profile of a
microstructured fibre typically contains an array of air holes that run for the whole length
of the fibre. Such optical fibres have become known as “holey fibres”. The basic physical
principles that underlie holey fibres are no different from those that apply to solid fibres: light
is guided along the fibre because of the effective difference in refractive index between the
cladding, which is laced with air holes, and the solid core.

Unlike conventional optical fibres, holey fibres can be manufactured from a single material
(often pure silica is used). Two examples of typical holey fibres, manufactured at the Univer-
sity of Southampton, are shown in Figure 1. Why should there be such interest in fibres of this
type? The answer lies in the fact that it is possible (in particular when the structure scale of
the holes is small) to arrange that the effective refractive-index contrast of a holey fibre is a
strong function of the wavelength of the light being guided within the fibre. This allows the
construction of fibres that possess a host of highly unusual and tailorable optical properties
(see, for example [1–4]). In particular, holey fibres with small holes can be “endlessly single
mode”, so that only a single mode is transmitted regardless of wavelength. In addition, such
fibres can have mode areas ranging over as many as three orders of magnitude. Large mode
areas allow high optical power to be transmitted with few nonlinear effects (which is ideal
for long-range transmission) while small mode areas allow nonlinear effects to be achieved at
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Figure 1. Two typical silica holey fibres. The fibres on the left and right have core diameters of approximately
2·5 µm and 5 µm, respectively.

low power (useful, for example, in optical switching devices). Finally, holey fibres can display
anomalous dispersion throughout the visible spectrum, which allows for the possibility of soli-
ton formation in this wavelength range, something not possible in conventional single-mode
fibres.

As far as applications are concerned, the presence of air holes in holey fibres allows a
vast new range of potential applications for optical fibres. These range from novel nonlin-
ear devices to fibres that are capable of high-power delivery, and from fibres that may be
used for dispersion compensation or flattening for WDM (wavelength division multiplexing)
telecommunications systems to fibres that are capable of evanescent field sensing.

Other types of microstructured fibres are becoming increasingly important. Photonic band-
gap fibres guide light by making use of the photonic bandgaps that may occur in a periodic
structure (see, for instance [5]). Atom guiding fibres (see, for example, [6]) typically contain
four holes into which platinum or gold electrodes are inserted. When a current is passed along
these wires, a magnetic field is created that may be used to guide single atoms down the
central hole. Atomic transport and deposition, and a number of other novel processes are thus
possible.

The huge range of applications described above render it imperative that holey fibres
may be manufactured in an efficient and accurate manner. Essentially, all optical fibres are
produced by heating and then drawing a macroscopic preform (whose diameter is typically
a few centimetres) down into fibre form (125 µm) using a conventional fibre-drawing tower.
The required preforms for microstructured fibres may be manufactured in a variety of ways,
and the two most common approaches are described briefly here. One method involves stack-
ing small capillaries (which are fabricated from larger capillaries by “caning” using a fibre
drawing tower) around a solid rod, which ultimately forms the fibre core. This approach is
generally preferred when large air holes are required in the final fibre structure. Alternatively,
the required arrangement of holes can be drilled directly in a solid glass blank. This is effec-
tive when only a few well-separated holes are required, as, for example, in the case of the
atom-guiding fibres described above.

Whichever manufacturing method is used to produce a preform, the geometry of the final
fibre may be significantly influenced by controlling parameters in the drawing process such
as the furnace temperature, the feed speed and the draw speed. Obviously, when high temper-
atures or low draw speeds are used, the air holes in the cladding tend to reduce in size, and
may even collapse completely because of the effects of surface tension. For some types of
fibre where small holes are required, partial collapse may be exploited to draw the required
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holey fibre from a readily-manufactured preform. Holes with small diameters relative to their
separation distances (as required, for example, in endlessly single mode fibres) are very hard
to produce by any other means. Conversely, for fibres with small mode areas or full photonic
band gaps, relatively large holes are required and hole collapse should be minimised. Under
some circumstances, the collapse process may be exploited to tune the final size of the air
holes. One possible proposed method to control hole collapse is to pressurise the air in the
holes. If such collapse control can be perfected, then there are important consequences for
commercial holey-fibre manufacture, as a range of fibres with dramatically different optical
properties may be made from a single preform.

The chief purpose of a mainly theoretical study such as this one is to try to quantify the
parametric dependence of the drawing process on quantities such as draw and feed speed,
temperature, viscosity, gravity, surface tension and hole pressurisation and thus to indicate
what might be feasible as controlling mechanisms for holey-fibre fabrication. The most labour-
intensive (and expensive) part of fibre manufacture is the creation of the preform; being able
to control the drawing process to such an extent so as to allow different end products to be
pulled from a single preform is thus extremely attractive.

Previous theoretical predictive studies of fibre drawing grew for the most part from theory
that had already been developed for the textile industry to model the spinning of molten thread-
lines (see, for example [7–10]). This general methodology was then adapted to steady optical-
fibre drawing (see, for example [11–13]). Much of the literature concerns fibre-drawing mod-
els that are essentially small perturbations about a state of steady unidirectional extensional
flow, and this is broadly the approach that we follow in this study. Various authors have ex-
amined the additional influences of heat transfer [14], surface tension [15], weak unsteadiness
[8] and inertia [9]. The effects of both gravity and inertia were included in a general theory
of slender viscous fibres of arbitrary cross section [16]. From a manufacturing point of view,
the worst thing that can happen in a fabrication plant is that the fibre fractures. Fibre breakage
was studied in [17], using an asymptotic model essentially similar to [15], showing that, if the
fibre material is assumed to be a Newtonian viscous fluid, then, unless the initial conditions
possess certain singularities, the cross-sectional area cannot be made to vanish in finite time.

The progress that can be made using analytical methods is necessarily limited, and a
number of purely numerical studies of optical-fibre drawing have also taken place (see, for
example [18–20]). The drawing of thin-walled viscous capillaries was modelled in [21] and
[21] (see also [23]), and [24] included some basic estimates of the strength of hollow glass
fibres for use in reinforced plastics.

Apart from these specific studies, however, no detailed theory has yet been proposed for
fibres that have a cross-section containing holes. Evidently the theory of fibres that contain a
large number of arbitrarily-arranged holes is likely to be extremely involved, and we do not
attempt this here. Rather, as a first step towards understanding holey-fibre drawing, we seek
to model the drawing of a capillary. The capillary caning problem is of direct relevance to
holey-fibre manufacture because large-scale capillaries are caned prior to the production of a
stacked holey-fibre preform. It also provides a useful indication about the degree of structure
retention that might be expected to apply to a more complex (multi-holed) structure for given
drawing conditions.
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Figure 2. Schematic diagram and nomenclature for capillary.

2. Mathematical modelling

To develop a mathematical model for the process of capillary drawing that is capable of
including the effects of internal hole pressurisation, surface tension and all of the other effects
that we wish to analyse, we begin from the Navier-Stokes and convection-diffusion equations

ρ(ut + uux + wur) = −px + 1

r
(µrur )r + (2µux)x + 1

r
(µrwx)r + ρg, (1)

ρ(wt + uwx + wwr) = −pr + µ

(
1

r
(rw)r

)
r

+ (µwx)x + µxur + 2µrwr, (2)

ux + 1

r
(rw)r = 0, (3)

ρcp(Tt + uTx + wTr) = (kTx)x + 1

r
(krTr)r + σα(T 4

a − T 4). (4)

In (1)–(4), derivatives are denoted by subscripts, t denotes time, x measures the distance
along the axis of a capillary, and r denotes distance normal to it. The flow has been assumed
to be axisymmetric, and therefore independent of the azimuthal angle θ . The velocity q of
the molten glass is denoted by q = uex + wer where ex and er are unit vectors in the x and
r directions, respectively. A schematic diagram of the geometry of the capillary is shown in
Figure 2.

The pressure is denoted by p, g is the acceleration due to gravity, and density, dynamic
viscosity, surface tension, thermal conductivity and specific heat are denoted by ρ, µ, γ , k
and cp, respectively. The glass temperature is denoted by T , the ambient temperature in the
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furnace by Ta , σ is the Stefan-Boltzmann constant and α is a material constant that involves
the emissivity of the fibre.

Regarding the modelling involved in (1)–(4), the first three equations are standard, pro-
vided that we agree that molten glass may be treated as a linear incompressible fluid. The
energy-conservation equation (4) requires some further discussion. We have chosen to take
a simple point of view, namely that diffusive and convective heat transfer in the fibre are
accounted for as normal, viscous dissipation is ignored, and that the fibre, being optically
thin, absorbs radiation directly from the surrounding furnace and re-radiates heat back to the
furnace. Many other similar models have been discussed in the literature (see, for example,
[25], [26], [18], [10] and [20]). We note that more detailed modelling may be appropriate, par-
ticularly in accounting more carefully for the radiation field within the fibre and the resulting
body heating. The boundary conditions for the equations also have an important role to play;
these will be discussed fully below.

Some discussion concerning the variation of the physical constants with temperature is also
apposite. In reality, each of ρ, k, γ , cp , µ and α varies with temperature. In practice, however,
though the viscosity of the glass may vary by orders of magnitude over a relatively modest
temperature range, the other parameters are only weak functions of T (see, for example [25]).
For the remainder of this study we therefore assume that µ alone is a function of temperature.

As shown in Figure 2, we denote the inner and outer radii of the capillary by r = h1(x, t)

and r = h2(x, t), respectively. The equations (1)–(3) thus apply in the region h1 ≤ r ≤
h2, and must be solved subject to suitable boundary and initial conditions, which will be
considered presently. The feed and draw speeds are denoted by Uf and Ud , respectively, the
ambient pressure in the air surrounding the fibre is denoted by pa and the pressure in the hole
by pH .

It is now appropriate to non-dimensionalise (1)–(4) to take advantage of the small para-
meters that are present in the problem. We set x = Lx̄, r = hr̄, t = (L/U)t̄ , h1 = hh̄1,
h2 = hh̄2, µ = µ0µ̄, p = (µ0UL/h

2)p̄, u = Uū, w = (hU/L)w̄, Ta = TRT̄a and T = TRT̄

where an overbar denotes a non-dimensional quantity and L denotes a typical hot-zone length
in the fibre-drawing furnace. Here h denotes a typical drawn capillary size, U denotes a typical
draw speed and µ0 and TR denote a typical glass viscosity and fibre reference temperature,
respectively. The equations now become

ε2 Re[ūt̄ + ūūx̄ + w̄ūr̄ ] = −p̄x̄ + ε2(2µ̄ūx̄)x̄ + 1

r̄
(µ̄r̄ūr̄ )r̄ + ε2

r̄
(µ̄r̄w̄x̄)r̄ + ε2Re

Fr
,

ε2 Re[w̄t̄ + ūw̄x̄ + w̄w̄r̄ ] = − p̄r̄

ε2
+ ε2(µ̄w̄x̄)x̄ + µ̄

(
1

r̄
(r̄w̄)r̄

)
r̄

+ µ̄x̄ ūr̄ + 2µ̄r̄ w̄r̄ ,

ūx̄ + 1

r̄
(r̄w̄)r̄ = 0,

T̄t̄ + ūT̄x̄ + w̄T̄r̄ = 1

Pr Re
(T̄x̄)x̄ + 1

r̄ε2Pr Re
(r̄T̄r̄ )r̄ +  (T̄ 4

a − T̄ 4),

where the key non-dimensional parameters in the problem are given by

ε = h

L
, Re = LUρ

µ0
, Fr = U 2

gL
, Pr = µ0cp

k
,

and
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 = LσαT 3
R

ρcpU
.

A full consideration of the relative sizes of each of the non-dimensional parameters above
would require us to consider specific drawing scenarios, and we wish to propose as general
a model as possible. We therefore simply note at this stage that in all drawing configurations
h 	 L (the largest values of ε tend to occur for capillaries, where L is of order cm and h of
order mm. For optical fibres ε is much smaller). We shall therefore assume henceforth that the
small parameter in the problem is ε 	 1. The leading-order equations in ε are now satisfied
by the obvious ansatz

ū = ū0(x̄, t̄ )+ ε2ū1(x̄, r̄, t̄ )+ . . . ,

w̄ = w̄0(x̄, r̄, t̄)+ ε2w̄1(x̄, r̄, t̄ )+ . . . ,

p̄ = p̄a + ε2P̄ (x̄, r̄, t̄)+ . . . ,

T̄ = T̄0(x̄, t̄ )+ ε2T̄1(x̄, r̄, t̄)+ . . . ,

where p̄a denotes the non-dimensional ambient pressure, defined in the obvious way by pa =
(µ0UL/h

2)p̄a and (from the continuity equation)

w̄0 = − r̄ ū0x̄

2
+ Ā

r̄
,

with the function Ā(x̄, t̄ ) to be determined. Since from our ansatz, T̄ (and thus the viscosity) is
independent of r̄ to leading order, it follows that, correct to O(ε2), the x̄-momentum equation
is now

Re[ū0t̄ + ū0ū0x̄] + P̄x̄ − Re

Fr
− (2µ̄ū0x̄ )x̄ + µ̄ū0x̄x̄ = 1

r̄
(µ̄r̄ū1r̄ )r̄ , (5)

and the r̄-momentum yields P̄r̄ = 0, so that P̄ is a function of x̄ and t̄ alone. The energy
equation gives

T̄0t̄ + ū0T̄0x̄ − 1

Re Pr
(T̄0x̄ )x̄ −  (T̄ 4

a − T̄ 4
0 ) = 1

r̄Re Pr
(r̄ T̄1r̄ )r̄ , (6)

and to close the problem it is now necessary to specify kinematic conditions, normal and
tangential stress conditions and temperature conditions on the free boundaries h̄1 and h̄2. The
kinematic conditions are

w̄0 = h̄1t̄ + ū0h̄1x̄ at r̄ = h̄1, (7)

w̄0 = h̄2t̄ + ū0h̄2x̄ at r̄ = h̄2. (8)

As mentioned above, we wish to examine the possibility of controlling hole size by internal
hole pressurisation. The normal-stress boundary conditions will thus include both the surface-
tension coefficient γ and the fibre hole pressure pH . If we define the non-dimensional fibre
hole pressure by pH = (µ0UL/h

2)p̄H , it is clear that we must further write

p̄H = p̄a + ε2p̄o, (9)
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where p̄o is the non-dimensional hole overpressure. This scaling reflects the fact that, unless
the fibre hole pressure is within O(ε2) of the ambient pressure, the capillary will either col-
lapse immediately or “explode”. The Equation (9) therefore already gives a useful estimate of
the size of hole-inflation pressure that is required to prevent collapse.

The normal-stress boundary conditions may now be applied. The stress tensor T is given
by

T = µ0U

L

( −p̄/ε2 + 2µ̄ūx̄ µ̄ūr̄ /ε + εµ̄w̄x̄

µ̄ūr̄ /ε + εµ̄w̄x̄ −p̄/ε2 + 2µ̄w̄r̄

)
.

If we now denote the unit outward-pointing normal to r̄ = h̄i (i = 1, 2) by n̂i , then the
normal-stress conditions are

−n̂
T
1 T n̂1 + γ̄ µ0U

h̄1L
= p̄Hµ0U

Lε2
at r̄ = h̄1,

−n̂
T
2 T n̂2 − γ̄ µ0U

h̄2L
= p̄aµ0U

Lε2
at r̄ = h̄2.

Here a non-dimensional surface-tension coefficient has been defined by γ = µ0Uεγ̄ , thus
immediately giving an estimate of the order of magnitude that the size of surface tension of
the molten glass has to be to influence the final shape of the fibre.

We now assume that the tangential stress on both of the fibre boundaries is zero. Although
this is evidently a good approximation, a “drag” term could be added at this stage if required.
For i = 1, 2, we therefore have

t̂
T

i T̄ n̂i = 0,

where t̂ i is the relevant unit tangent vector. To complete the specification of the boundary
conditions, we assume that, because the thermal conductivity of air is much lower than than
the thermal conductivity of glass, the fibre is essentially insulated on its inner surface. We also
assume that it loses heat to the surrounding air in the furnace by Newton-type cooling at its
outer surface (alternative thermal boundary conditions may be incorporated into the model at
this stage if required). Thus (in dimensional variables)

Tr = 0 at r = h1,

kTr = N(Ta − T ) at r = h2,

where N is a heat-transfer coefficient that we assume for simplicity is constant and known
from standard engineering correlations.

The normal and tangential stress conditions and thermal boundary conditions may now be
expanded according to the ansatz for ū, w̄ and p̄. With

n̂
T
i = (−1)i+1√

1 + ε2h̄2
ix̄

(εh̄ix̄,−1), t̂
T

i = (−1)i+1√
1 + ε2h̄2

ix̄

(1, εh̄ix̄),

we find that
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− γ̄

h̄1
− P̄ + 2µ̄w̄0r̄ + p̄o = 0 at r̄ = h̄1,

− γ̄

h̄2
− P̄ + 2µ̄w̄0r̄ = 0 at r̄ = h̄2,

2h̄1x̄ (ū0x̄ − w̄0r̄ )− w̄0x̄ = ū1r̄ at r̄ = h̄1,

2h̄2x̄ (ū0x̄ − w̄0r̄ )− w̄0x̄ = ū1r̄ at r̄ = h̄2.

Expanded in non-dimensional variables, the thermal boundary conditions become

T̄1r̄ = 0 at r̄ = h̄1, (10)

T̄1r̄ = N̄(T̄a − T̄0) at r̄ = h̄2, (11)

where N̄ = LN/(εk) determines the relative importance of the Newton cooling, so that for
small values of N̄ the heat transfer is negligible, but for large N̄ the condition is essentially
T = Ta .

It is now possible to derive a closed system of leading-order equations for annular fibre
drawing. We first multiply the x-momentum equation (5) by r̄ and integrate from r̄ = h̄1 to
r̄ = h̄2 to yield

(h̄2
2 − h̄2

1)

2

[
Re(ū0t̄ + ū0ū0x̄ )+ P̄x̄ − Re

Fr
− 2(µ̄ū0x̄ )x̄ + µ̄ū0x̄x̄

]
=

(µ̄h̄2ū1r̄ ) |h̄2
−(µ̄h̄1ū1r̄ ) |h̄1

. (12)

Next, the energy equation (6) is multiplied through by r̄ and integrated from r̄ = h̄1 to r̄ = h̄2

to yield(
h̄2

2 − h̄2
1

2

)[
T̄0t̄ + ū0T̄0x̄ − 1

Re Pr
(T̄0x̄ )x̄ −  (T̄ 4

a − T̄ 4
0 )

]
=

1

Re Pr
(h̄2T̄1r̄ |h̄2

−h̄1T̄1r̄ |h̄1
).

The kinematic conditions (7) and (8) now give

(h̄2
1)t̄ + (h̄2

1ū0)x̄ = 2Ā, (13)

(h̄2
2)t̄ + (h̄2

2ū0)x̄ = 2Ā, (14)

and the normal and tangential stress boundary conditions, when applied at r̄ = h̄1 and r̄ = h̄2,
respectively, give

0 = − γ̄

h̄1
− P̄ + p̄o + µ̄

(
−ū0x̄ − 2Ā

h̄2
1

)
, (15)

0 = γ̄

h̄2
− P̄ + µ̄

(
−ū0x̄ − 2Ā

h̄2
2

)
, (16)
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ū1r̄ |r̄=h̄1
= 2h̄1x̄

(
3ū0x̄

2
+ Ā

h̄2
1

)
− Āx̄

h̄1
+ h̄1ū0x̄x̄

2
, (17)

ū1r̄ |r̄=h̄2
= 2h̄2x̄

(
3ū0x̄

2
+ Ā

h̄2
2

)
− Āx̄

h̄2
+ h̄2ū0x̄x̄

2
, (18)

while the relevant temperature boundary conditions are (10) and (11). The equations (12)–
(14) and (15)–(18) now constitute a system of seven equations in seven unknowns for the
quantities h̄1, h̄2, ū0, P̄ , Ā, ū1r |r̄=h̄1

and ū1r |r̄=h̄2
These equations may now be greatly

simplified. If we regard (15) and (16) as linear equations for Ā and P̄ , we find that

Ā = p̄oh̄
2
1h̄

2
2 − γ̄ h̄1h̄2(h̄1 + h̄2)

2µ̄(h̄2
2 − h̄2

1)
, P̄ = γ̄ (h̄1 + h̄2)− p̄oh̄

2
1

h̄2
2 − h̄2

1

− µ̄ū0x̄ .

When (17) and (18) are used in (12), a great deal of cancellation occurs, and the final (dimen-
sional) equations that govern the drawing of a capillary become

ρ(h2
2 − h2

1)[u0t + u0u0x − g] = [3µ(h2
2 − h2

1)u0x + γ (h1 + h2)]x, (19)

(h2
1)t + (h2

1u0)x = poh
2
1h

2
2 − γ h1h2(h1 + h2)

µ(h2
2 − h2

1)
, (20)

(h2
2)t + (h2

2u0)x = poh
2
1h

2
2 − γ h1h2(h1 + h2)

µ(h2
2 − h2

1)
, (21)

(h2
2 − h2

1)

2
[ρcp(T0t + u0T0x)− k(T0x)x − σα(T 4

a − T 4
0 )] = h2N(Ta − T0), (22)

where po = pH − pa .
To fully close the problem (19)–(22), it is necessary to specify appropriate boundary and

initial conditions. It is simplest to assume that h1, h2, u0 and T0 are all known as functions
of x at time t = 0; for the majority of this study, however, we will be interested primarily
in steady-state fibre manufacture. As far as boundary conditions are concerned, the preform
geometry is invariably known, the feed speed is normally prescribed and the temperatures at
the start and end of the draw are assumed to be given. At the furnace exit different boundary
conditions may be appropriate for different regimes of fibre manufacture. For “caning” (the
drawing of relatively large capillaries with outer diameters (ODs) of order mm) the capillaries
are normally pulled by counter-rotating wheels that travel at a constant speed (for details see
Figure 4 in Section 6.1). Some slip may occur between the drawn capillary and the wheels.
Once drawn, these capillaries may later be stacked together to create a preform. Holey fibres
are drawn from a preform of this type, and the finished product (which is very thin) is normally
pulled onto a rotating drum. It may therefore not be quite clear whether the draw speed or the
draw force is the appropriate condition to prescribe.

For definiteness, we shall assume that, unless otherwise stated, the boundary conditions for
(19)–(22) are that the geometry of the capillary preform is known and that the feed and draw
speeds are prescribed at x = 0 and x = L, respectively. Thus

h1(0) = h10, h2(0) = h20, u0(0) = Uf , u0(L) = Ud,
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T0(0) = Tf , T0(L) = Td. (23)

It is worth pointing out that these should be regarded as lowest-order boundary conditions
appropriate to our leading-order model, and that the full Navier-Stokes problem described by
(1)–(4) would require additional boundary data to be fully specified.

3. Orders of magnitude of terms in the equations

In deriving (19)–(22) above we have deliberately exploited only the large aspect ratio of
the fibre and have retained all other parameters in the analysis. In most drawing scenarios,
however, some terms in the equations are small and may be neglected; this makes further
simplifications possible. Many different drawing conditions are of practical interest: in caning
the preform typically has an OD of between 4 and 20 mm. The inner diameters (IDs) of such
capillary preforms usually range from 1·5 mm to 90% of the OD. Feed speeds tend to range
between 0·5 and 5 mm/min and the final OD of the drawn capillary may range between 0·5
and 2·5 mm.

Holey fibres normally have a far more complex structure than the axisymmetric equations
above can describe. We can, however, use the drawing conditions of a holey fibre to give some
indication of the characteristic dimensions of interest. A single capillary within a multiple-
hole holey-fibre preform is caned as above, and may subsequently be drawn down to an OD
of 0·1–10 µm. A typical holey fibre may contain as many as 100 such capillaries occupying
a total of between 10 and 100 µm of the final drawn fibre diameter. Typical draw speeds for
holey fibres range between 10 and 50 m/min.

As far as material properties are concerned, both capillaries and holey fibres are routinely
pulled from a very wide range of materials. Indeed, holey fibres have been fabricated from
silica glasses of various grades, Gallium Lanthanum Sulphide glasses, and even polymers, at
temperatures between a few hundred and 2300 ◦C. The drawing temperature inevitably reflects
the viscosity at which viable drawing may take place. The majority of furnaces have a hot zone
of length 1–5 cm. For many glasses accurate values for surface tension and its variation with
temperature are not available. Values of about γ = 0·3 N/m ([27], [28]) may be regarded
as typical. As far as hole pressurisation is concerned, experimental studies (described later)
indicate that values of po of up to a few p.s.i. (1 p.s.i. ∼ 6895 Pa) appear to be appropriate for
some drawing regimes. Viscosities vary greatly with temperature and are frequently regarded
as proprietary data: however, typical values are of order 104 –105 kg/(m sec).

The relative importance of the terms appearing in the equations (19)–(22) may be estimated
for the various drawing scenarios described above. If we rearrange (19) so that the viscosity
term is multiplied by unity, then the relative importance of inertial, gravitational and surface
tension effects are characterised respectively by the non-dimensional parameters

LUρ

µ0
,

gL2ρ

µ0U
,

γL

Uhµ0
. (24)

If we scale the left-hand sides of (20) and (21) so that the advective terms are unity, then the
internal hole pressurisation and surface tension effects are similarly characterised by

Lpo

Uµ0
,

γ L

Uhµ0
. (25)
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Consideration of the regimes of practical interest outlined above yields a number of general
conclusions: first, the non-dimensional parameters in (24) are never large compared to unity
and hence viscosity effects are almost always important. Second, we find that inertial effects
are invariably very small (though as we shall see in Section 5 below, they may influence the
stability of the drawing process). Gravitational effects are more important in caning than in the
drawing of holey fibres, and in many regimes surface tension and viscous effects compete. As
far as the parameters in (25) are concerned, we find that surface-tension effects are normally
non-negligible. Finally, the non-dimensional parameter Lpo/Uµ0 in (25) needs to be of order
unity for internal pressurisation effects to be significant.

Analysis of the temperature equation (22) may be carried out in the same way as above,
but is greatly complicated by uncertainties in the coefficients k and N . If both the diffusion
and the surface heat transfer are essentially determined by radiative-heat-transfer effects, then
diffusion, bulk heating and surface heat transfer will all assume the same importance. It is also
evident that the advective terms in (22) may be important when temperatures are low or the
draw speed is large.

4. Asymptotic limits of the model

The general equations (19)–(22) may now be examined in a number of asymptotic lim-
its. These special cases can give valuable information relevant to the manufacture of both
capillaries and fibres.

First, we note that solid fibres have been analysed using extensional flow arguments similar
to those described above on a number of occasions. These models therefore provide a partial
check on (19)–(22). In particular, if we consider isothermal solid-fibre drawing and set h1 =
0, and h2 = H , then we find that (21) and (19) become

(H 2)t + (H 2u0)x = 0, ρH 2(u0t + u0u0x − g) = [3µH 2u0x + γH ]x,
which is in exact agreement with (for example) [16].

4.1. SHAPE-PRESERVING STEADY SIMILARITY SOLUTION

A number of simple steady solutions are available to (19)–(22) when internal hole pres-
sure, surface tension, inertial and gravity effects are ignored. Under these assumptions, the
equations become

(3µ(h2
2 − h2

1)u0x)x = 0,

(h2
1u0)x = (h2

2u0)x = 0,

(h2
2 − h2

1)

2
[k(T0x)x − σα(T 4

a − T 4
0 )] = h2N(Ta − T0).

Assuming that the boundary conditions (23) apply, we quickly find that

h2
1u0 = h2

10Uf , h2
2u0 = h2

20Uf , (26)

and

log

(
u0

Uf

)
= β

(∫ x

0

dξ

µ(T (ξ))

)
/

(∫ L

0

dξ

µ(T (ξ))

)
, (27)
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where

β = log(Ud/Uf ).

Given a known functional form for the viscosity as a function of temperature, we may now
complete the solution by solving the temperature equation. The simplest case occurs when µ
is independent of temperature (or when drawing is isothermal so that T0 = Ta). In this case,
we have

u0 = Uf eβx/L, h1 = h10e−βx/2L, h2 = h20e−βx/2L.

When the viscosity depends upon temperature and the furnace temperature profile Ta(x) may
be directly measured, (27) may be used under the assumption that T (x) ≈ Ta(x) to quantify
the details of the drawing process as a function of the furnace profile.

Whatever the dependence of µ on temperature, we note from (26) that the absence of
surface tension and internal hole pressurisation means that the initial fibre geometry is always
preserved throughout the pull, and there is no question of hole closure or fibre “explosion”.
This is essentially a consequence of the fact that, at this level of approximation, no forces act
in the plane of the fibre cross-section.

4.2. THE EFFECTS OF FIBRE INERTIA AND GRAVITY

Some analytical progress may also be made in quantifying the effects of inertia. If we consider
steady flow and ignore temperature variations, gravity, hole pressurisation and surface tension
then (19)–(21) become

ρ(h2
2 − h2

1)u0u0x = [3µ(h2
2 − h2

1)u0x]x, (h2
1u0)x = 0, (h2

2u0)x = 0.

These equations may be solved using standard methods, and when the boundary conditions
(23) are applied, we find that

u0 = 3Ufµκeκx

3µκ + ρUf (1 − eκx)
,

h1 = h10

√
3µκ + ρUf (1 − eκx)

3µκeκx
,

h2 = h20

√
3µκ + ρUf (1 − eκx)

3µκeκx
,

where the constant κ satisfies the transcendental equation

eβ = Ud

Uf
= eκL

ρUf

3µκ (1 − eκL)+ 1
. (28)

We note first that the ratio h1/h2 remains constant. Inertia cannot therefore affect the fibre
geometry ratio. Some elementary analysis may be used to show that for physically relevant
cases where Ud ≥ Uf , ρ̃ ≥ 0, (28) always possesses a solution (where we have written
ρ̃ = ρUfL/3µ). A special case arises when precisely eβ = 1/(1 − ρ̃), in which case κ = 0 is
the only solution and the fibre velocity has algebraic behaviour. Otherwise, it is easy to show
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that if ρ̃ ≥ 1 we have κ < 0. Further, if 0 < ρ̃ < 1 then we have κ > 0 for eβ > 1/(1 − ρ̃),
and κ < 0 for eβ < 1/(1 − ρ̃). In practice, we expect that the ratio ρ̃ is always likely to be
small. In the theoretical (but practically unlikely) case of ρ̃ large, it may also be shown that
there is a boundary layer near to x = L. This implies that a very dense fibre travels at its feed
speed for most of the draw until just before the end of the furnace.

It is also worth mentioning that some progress may be made when the fibre inertia is
neglected, but gravity is re-introduced into the equations. We find that

u0 = C2
1e2C1(x+C2) − 2C1φeC1(x+C2) + φ2

2C3
1eC1(x+C2)

,

h1 = h10

√
Uf

u0
, h2 = h20

√
Uf

u0
,

where φ = ρg/3µ and C1 and C2 are constants that satisfy simultaneous transcendental
equations. The effect of including gravity is thus similar to that of including inertia: the fibre
speed and the internal and external diameters are modified, but the initial hole geometry is
still preserved throughout the draw.

4.3. THE EFFECTS OF SURFACE TENSION

Thus far all asymptotic limits that we have considered have preserved the initial preform
geometry. In practice, however, when capillaries or holey fibres are drawn, surface tension
can lead to significant geometry changes and even hole collapse.

Some analytical progress may be made in the steady isothermal case where internal hole
pressurisation, gravity and inertia are ignored, but the effects of surface tension are retained.
Equation (19) may be integrated to give

3µ(h2
2 − h2

1)u0x = Fd − γ (h1 + h2), (29)

where Fd is a constant that amounts precisely to the total force applied to the fibre. Subtracting
(20) from (21) we have

(h2
2 − h2

1)u0 = C, (30)

where the constant C measures the mass flux of the draw. We now regard (29) and (30) as
formulae for u0 and u0x , expand out equations (20) and (21), substitute for u0 and u0x and
then divide to obtain

dh2

dh1
= γ (h1 + h2)(h2 − 3h1)− Fdh2

γ (h1 + h2)(h1 − 3h2)− Fdh1
. (31)

Elementary methods may now be used to integrate (31), giving

(h2 − h1)
1/3

(h2 + h1)
1/3

[2γ (h1 + h2)+ Fd ] = D, (32)

where D is a constant that may be found simply by evaluating the left-hand side of (32) at
x = 0. In reality, (32) is not as helpful as it might seem. In principle, it is possible to solve
for h2 in terms of h1 so that we may determine u0 as a function of h2 using (30), and the full
solution may then be found using (29), but the equation connecting h1 and h2 is a quartic which
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complicates matters considerably. Furthermore, the constant Fd is not in general known, since,
as discussed above, the most common prescription of the fibre-drawing problem specifies the
feed and draw speeds but gives no information concerning the fibre acceleration at either end.
In spite of this, one may argue (as at the end of Section 2) that, though the draw speed is often
prescribed, there may be slippage, thereby dictating the force applied at the fibre winder. In
this case, the constant Fd may be regarded as known and (32) may be used immediately to
show that hole closure (h1 = 0) takes place when the outer diameter of the fibre is given by

h2 = h20

(
(1 − a)1/3(1 + a)2/3 − Fd

2γ h20

(
1 −

(
1 − a

1 + a

)1/3
))

, (33)

where the preform geometry ratio a is defined by a = h10/h20. This equation provides some
insight into the minimum outer diameter capillary that may be drawn from a given preform
before inner hole closure occurs. Given the physical condition 0 < a < 1 we note that
capillaries with smaller ODs where the inner hole remains intact may be drawn by using
larger draw forces and/or smaller surface tensions. If, as is normally the case, the OD of the
drawn fibre is required to be significantly smaller than the preform, then (33) asserts that the
quantity multiplying h20 on the right-hand side of (33) must be small, and thus

Fd ≈ 2γ h20(1 + a)(1 − a)1/3

(1 + a)1/3 − (1 − a)1/3
.

We may interpret this result for both thick- and thin-walled tubes: for thick-walled capillaries
(a 	 1) the minimum outer diameter that may be drawn before collapse occurs is

h20

(
1 − Fda

3γ h20

)
.

We therefore require Fd ≈ 3γ h2
20/h10, which suggests that closure of the inner hole is very

sensitive to the quantity Fd .
For thin-walled capillaries (a ∼ 1) the minimum OD that can be drawn is

h20

(
(4(1 − a))1/3 − Fd

2γ h20

)
,

which, for reasonable drawing conditions, implies that Fd ≈ 2γ h20(4(1 − a))1/3. Once again,
this shows that collapse is very sensitive to draw force.

4.4. SMALL-SURFACE-TENSION LIMIT

In the previous subsection we were able to draw some conclusions for arbitrarily sized capil-
laries subject to arbitrary surface-tension forces. Still more analytical progress may be made
when the non-dimensional ratio δ = γL/(µhU) is much less than unity, so that the effects
of surface tension are present, but “small”. As before, we consider the isothermal version of
the governing equations when inertia and gravity are neglected, and there is no internal hole
pressurisation.

In Section 6, we will present comparisons with experiments that were performed under
precisely these conditions; the study of this viscosity-dominated limiting case of the equations
is thus particularly relevant. Under such conditions, we may therefore conveniently regard
(19)–(21) as a regular perturbation problem in δ. Solving the equations now becomes a simple
matter, and we find that
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u0 = Uf eβx/L + 2γLeβx/L

3µβ(h20 − h10)

×
[
e−βx/2L − 1 +

( x
L

)
(1 − e−β/2)

]
,

(34)

h1 = h10e−βx/2L + γLe−βx/L

3µβUf (h20 − h10)

×
[
(3h20 − h10)(1 − eβx/2L)+

(
h10x

L

)
eβx/2L(e−β/2 − 1)

]
,

(35)

h2 = h20e−βx/2L + γLe−βx/L

3µβUf (h20 − h10)

×
[
(3h10 − h20)(1 − eβx/2L)+

(
h10x

L

)
eβx/2L(e−β/2 − 1)

]
,

(36)

where once again β = log(Ud/Uf ).
Equations (34)–(36) allow the prediction of the degree of collapse in the final structure,

which depends only upon the ratio of the surface tension to the viscosity. We also note that
the temperature dependence of this problem manifests itself only via this ratio of the surface
tension to the viscosity. We may employ (35) to re-examine hole collapse. By setting h1 = 0
in (35) we find that collapse occurs exactly at x = L when

h10 = γLh20

µβUf (h20 − h10)
(1 − e−β/2).

A good approximation to this condition may be gained by noting that e−β/2 = √
Uf /Ud

which, for the purposes of the current study, may be regarded as negligible compared to one.
Hole collapse at or before x = L thus occurs when

µUf log(Ud/Uf ) ≤ γLh20

h10(h20 − h10)
. (37)

For a given preform, material and furnace, we may regard the right-hand side of (37) as known.
As far as the control parameters Ud and Uf are concerned, therefore, we conclude that, in this
regime, hole collapse is more sensitive to the feed speed than the draw speed. Also, we note
that the effect of changing the furnace temperature enters (37) via the parameter µ and so, not
surprisingly, the phenomenon of hole closure is sensitive to temperature.

4.5. THE ROLE OF INTERNAL HOLE PRESSURE

One obvious way of controlling the degree of hole closure and preventing collapse is to intro-
duce a pressure difference between the air inside and outside the capillary. To begin to quantify
the effects of hole pressurisation, we first study (19)–(22) assuming a steady isothermal draw
and that the effects of inertia, gravity and surface tension are ignored. The problem that must
then be solved reduces to

[(H2 −H1)u0x]x = 0, (H1u0)x = (H2u0)x = poH1H2

µ(H2 −H1)
,
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where we have written H1 = h2
1 and H2 = h2

2. When the two mass-conservation equations are
subtracted, we find that (H2 −H1)u0 = (H20 −H10)Uf (where H10 = H1(0), H20 = H2(0)).
We may now use elementary methods to solve the governing equations. These yield

u0 = Uf eβx/L,

H1 = H10(H20 −H10)e−βx/L

H20 exp
[
poL

Uf µβ
(e−βx/L − 1)

]
−H10

,

H2 = H20(H20 −H10)e−βx/L

−H10 exp
[
poL

Uf µβ
(−e−βx/L + 1)

]
+H20

,

so that

H1

H2
= a2 exp

[
poL

Ufµβ
(1 − e−βx/L)

]
.

Though the fibre speed is therefore not influenced by internal hole pressurisation, the fibre no
longer preserves its initial inner/outer geometry ratio. At the end of the draw when x = L we
have

H1

H2
= a2 eQ,

where

Q = poL(Ud − Uf )

µUfUdβ
.

Since H1/H2 increases without limit as po → ∞, we may anticipate that under some circum-
stances the fibre may “explode”. The expressions for H1 and H2 confirm that both become
unbounded when

x = −L

β
log

[
1 + 2Ufµβ

poL
log a

]
.

Since the draw takes place over the region 0 ≤ x ≤ L, there is therefore no hope of achieving
a controlled manufacturing process if

po ≥ 2Ufµβ log a

L(e−β − 1)
. (38)

Although, of course, surface-tension effects have been ignored in deriving (38), this expression
nevertheless provides a good practical upper bound for the amount of hole pressurisation that
may be used for given draw. Evidently larger hot zone lengths L, smaller viscosities µ and
smaller feed speeds Uf all decrease the critical value of po and therefore increase experimen-
tal sensitivity. This suggests that, though internal hole pressurisation might be employed to
prevent hole collapse, it may lead to drawing processes that are harder to control.

4.6. CLOSURE OF A SMALL HOLE

In practice we would like to understand the interplay between surface tension and hole pres-
surisation. When the effects of hole pressurisation and surface tension are both included, (31)
becomes
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dh2

dh1
= γ (h1 + h2)(h2 − 3h1)− Fdh2 + 3poh2

1h2

γ (h1 + h2)(h1 − 3h2)− Fdh1 + 3poh1h
2
2

. (39)

Unfortunately, this equation cannot be solved in closed form to yield h2 in terms of h1. Al-
though it is possible to carry out a phase-plane analysis of (39) (there are 7 singular points),
this does not appear to lead to any very valuable conclusions.

A less general but more illuminating approach is to consider the fate of a “small” hole dur-
ing a steady isothermal draw. Since there are many practical circumstances in which we wish
to produce fibres with small holes, it is particularly important to understand this regime and
to be able to explore parameters that may be exploited to avoid hole closure. As the internal
capillary hole begins to close off, we may expect that, apart from the hole pressurisation, the
important governing forces will be the viscosity and the surface tension. We therefore ignore
inertial and gravitational effects in the Equations (19)–(21) and scale by setting h1 = δhh̄1

and h2 = hh̄ where δ is small. The surface tension must also be scaled using δ, since a small
hole would instantly close for a surface tension of order µ0Uε. Under these assumptions, the
(redimensionalised) equations become, to leading order,

(3µh2
2u0x)x = 0, (40)

(h2
2u0)x = 0, (41)

(h2
1u0)x = poh

2
1

µ
− γ h1

µ
, (42)

Both (40) and (41) may be solved as before to yield

h2 = h20 exp(−βx/L), u0 = Uf exp(βx/L),

and (42) therefore becomes simply

(h2
1eβx/L)x = po

µUf
h2

1 − γ

µUf
h1, (43)

subject to the boundary condition h1(0) = h10 where h10 = O(δh). Equation (43) may be
solved in closed form; we find that either h1 = 0 or

h1 = exp

(
−βx

2L
− P e− βx

L

)[
h10eP −

∫ x

0
G exp

(
−βu

2L
+ P e− βu

L

)
du

]
.

where the non-dimensional parameters P and G are defined by P = (poL)/(2βµUf ) and
G = γ /(2µUf ). Some observations about this solution are now in order. First, we note that
the only constant solution to (43) is h1 = 0. Moreover, by observing that at stationary points
when h1x = 0 we have h1xx = −β2h1/2L2, it follows that every solution to (43) can have
at most one maximum (which must occur when h1 is positive), and at most one minimum
(which must occur when h1 is negative). The case of h1 < 0 is, of course, unphysical. It is
worth observing that the solutions to (43) exhibit some interesting behaviour from what is,
essentially only a first-order linear ordinary differential equation.

It is now simplest to regard h10, γ , µ, Uf , L and β as known and classify solutions ac-
cording to the size of the internal hole pressure, and thus P . As in previous sections, one key
question concerns whether or not h1 reaches 0 before the end of the draw. The condition that
the internal hole closes at or before x = L is that po is less than or equal to the value defined
by
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G

∫ L

0
exp

(
−βu

2L
+ P e−βu/L

)
du = h10eP . (44)

and this may be regarded as a condition for “fibre collapse”.
As far as “fibre explosion” is concerned, it is an obvious consequence of our analysis for

small holes that (43) cannot be expected to lead to solutions that become unbounded; in any
case, the model would be invalid if this were to occur. Fibre explosion can still be investigated,
however. The condition that h′

1(0) > 0 amounts to

po >
γ

h10
+ βµUf

L
. (45)

Internal hole pressures greater than this may therefore be regarded as leading to “hole expan-
sion” where, for at least some part of the draw, the internal hole is increased in size.

It is, of course, not obvious how much expansion could be tolerated before a fibre would
actually explode but the expression (45) gives a reasonable conservative criterion for such
pressurisation. One might, for example, guess that in practice fibre explosion would take place
whenever h1 becomes so large that h1 > h20. The real value of (43), however, is the clue that it
gives to the sensitivity of the pressurised drawing of a fibre. If we simplify (43) to read h1 = 0
or

h1x = h1

(
Pβ

L
e−βx/L − β

2L

)
−Ge−βx/L,

then we see that the pressurisation term never contributes significantly to the solution unless
P ≥ 1/2. Furthermore, if G � βh10/2L, the solution is particularly sensitive to the level of
hole pressurisation. The “sensitivity parameter”

S = 2LG

βh10
= Lγ

µh10Uf log(Ud/Uf )

is thus the key parameter as far as the practicability of pressurised fibre drawing is concerned.
When S 	 1 internal hole pressurisation might be a valid experimental control mechanism:
if S � 1 then hole pressurisation is simply not worth considering.

4.7. SOLUTIONS TO THE FULL PROBLEM

When inertia, gravity, surface tension and hole pressurisation are included in (19)–(22) the
equations must be solved numerically. Though the numerical solution of the unsteady versions
of the equations is a fairly routine matter, our main interest is to analyse the steady-state man-
ufacturing process for capillaries. With time derivatives set equal to zero, (19)–(22) constitute
an ordinary-differential-equation two-point boundary-value problem which may be solved us-
ing standard library routines. In particular, we used the NAG routine D02HAF which employs
an efficient Runge-Kutta-Merson method (see, for example [29, Chapter 5]. Provided that
a good estimate can be found for u0x(0), this method is reliable and accurate. In this way
solutions may be computed for arbitrary values of the experimental parameters.

5. Stability of the drawing process

As far as the industrial process of drawing annular fibres is concerned, the stability of the
process is obviously a key issue. For instance, is the process sensitive to small changes in
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the experimental equipment or conditions? More importantly, is the process stable enough to
suggest that long lengths of fibre or capillary with uniform structure can be produced? Before
considering the stability of capillary drawing, it is helpful to consider first the case of solid
fibres.

5.1. STABILITY FOR SOLID FIBRES

The simplest isothermal stability analysis for a solid fibre is easy to carry out and has been
addressed many times before (see, for example [30], [8], or [28]). We briefly repeat the main
points of the analysis for convenience. Neglecting inertia, gravity and surface tension in (19)
and (21), setting h1 = 0 and writing A(x, t) = πh2

2(x, t), we find that the time-dependent
governing equations are

At + (Au0)x = 0, (Au0x)x = 0. (46)

To examine stability we now set

u0 = U0(x)[1 + u(x)eσ t ],
and

A = A0(x)[1 + a(x)eσ t ],
where U0 = Uf exp(βx/L), A0 = Af exp(−βx/L) are the steady-state solutions, Af is the
initial fibre cross-sectional area and a, u and σ are complex. Assuming in the normal way that
u and a are “small”, we find that at first order

σa + Uf eβx/L(a′ + u′) = 0, (47)

and

u′′ +
(
β

L

)
(u′ + a′) = 0, (48)

the boundary conditions being a(0) = u(0) = u(L) = 0. On elimination of u, we find that a
satisfies

a′′ + σ e−βx/L

Uf
a′ = 0. (49)

The solution of this equation that satisfies a(0) = 0 is

a = B

[
−Ei

(
1,− σL

βUf

)
+ Ei

(
1,−σLe−βx/L

βUf

)]
, (50)

where B is an arbitrary constant and as usual the exponential integral function Ei(n, x) is
defined by

Ei(n, x) =
∫ ∞

1

e−xt

tn
dt.

By integrating (48) from 0 to L and evaluating (47) at both 0 and L, we find that a second
boundary condition for (49) is given by
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a′(L)− a′(0)+ a(L)

[
σ

Uf
e−β − β

L

]
= 0,

and applying this to (50) (having set ξ = σL/(βUf )) we have the condition

eξe−β − eξ + [1 − ξe−β][Ei(1,−ξ)− Ei(1,−ξe−β)] = 0. (51)

In any given fibre-drawing experiment β, Uf and L are given. The stability problem therefore
consists of establishing under what circumstances the complex equation (51) possesses solu-
tions for ξ with positive real parts: these are the unstable cases. Some fairly routine numerical
calculations show that, as β increases from zero, (51) has a purely imaginary root when
β ∼ 3·00651 and thus the celebrated “draw resonance” (see, for example [21]) for solid
fibres occurs when Ud/Uf ∼ 20·21. In theory, this places a very severe restriction on fibre
drawing as draw ratios are normally a great deal higher than 20. Of course, this simple analysis
has ignored the effects of gravity, inertia, temperature and surface tension. Numerical studies
for a solid fibre (see, for example [31], [14], [28] and [9]) show that essentially (as might be
expected) inertia and gravity stabilise the process, but surface tension is a destabilising factor.
Normally these effects are rather small though, and this begs the question as to how (as they
routinely are) fibres can be manufactured with highly supercritical draw ratios. The answer
lies in the fact that, as already alluded to in Section 2, though ostensibly the draw speed is
prescribed, in reality some control of the force occurs owing to slippage at the exit winder.
Carrying out the same sort of analysis as above but with boundary conditions

u0(0) = Uf , A(0) = Af , A(L)u0x(L) = Fd,

gives U0 = Uf exp(χx), A0 = Af exp(−χx) where χ = Fd/AfUf . The stability equation
(49) becomes

a′′ + σ e−χx

Uf
a′ = 0,

and the solution with a(0) = 0 is thus

a = B

[
−Ei

(
1,− σ

χUf

)
+ Ei

(
1,−σ e−χx

χUf

)]
.

However, since in this case the boundary conditions are u(0) = 0, a(0) = 0 and u′(L) +
χ(u(L)+ a(L)) = 0, we find that a′(0) = 0, the problem is an initial-value one and therefore
no unstable modes exist.

5.2. STABILITY FOR CAPILLARY DRAWING

What of stability for capillary drawing? When inertia, gravity, surface tension and internal hole
pressurisation are ignored, simply adding (20) to (21) shows that the equations that determine
the stability of a capillary are essentially identical to (46), save for the fact that, once the
stability or otherwise of the draw has been established for a fibre of given cross-sectional
area, an extra equation is required to determine the details of the evolution of disturbances to
the inner and outer fibre radii. Most of the conclusions of Section 5.1 are thus identical for
capillaries. When surface tension and internal hole pressurisation are added, however, matters
are significantly complicated. Though we have observed that surface tension destabilises a
solid fibre, it is not at all clear if this conclusion will still hold for a capillary. The role of
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Figure 3. Results from tests of active silica capillary pressurisation. Two small capillaries attached to the wall of a
larger tube are drawn using a standard fibre drawing tower for a range of temperatures and overpressures. In each
case the lower of the two small capillaries is a control with no overpressure.

internal pressure in stability calculations is also opaque, though it seems intuitively obvious
that inertia and gravity will still act as stabilising mechanisms. The numerical calculations that
are required to confirm these conjectures are of a routine but somewhat involved nature; we
therefore postpone them to a further study.

6. Comparisons with experiment

In order to test the model, some simple capillary drawing experiments were performed. First,
some preliminary draws were performed using standard silica glass, and various amounts of
hole pressurisation. Our aim was to see whether the asymptotic results contained in Section 4
were qualitatively accurate.

Figure 3 shows the results of two experiments. The preform consisted of a large silica
capillary (OD=20mm, ID=16mm) to whose inside wall two small silica capillaries were
attached. The only function of the larger outer capillary is to support the small test capillaries,
so that we can preserve the remnants of any capillaries that may have exploded. These would
otherwise vanish without trace, leaving no evidence of their presence.

The initial attached capillary inner and outer radii were h10 = 0·64 mm and h20 = 0·8mm
respectively. The preform was drawn using a standard fibre drawing tower (described more
fully in Section 6.1). Experiments were carried out at temperatures of 1975 ◦C and 2225 ◦C.
For both experiments the feed and draw speeds wereUf = 2·6×10−5 m/sec andUd = 1

6 m/sec
respectively and the hot zone length was L = 0·03m. In each case pictured in Figure 3, the
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upper small capillary was maintained at a specified overpressure, and the lower small capillary
was unpressurised and therefore acted as a control.

At a temperature of 1975 ◦C, the control capillary remains open, but has experienced a
significant amount of collapse during the drawing process. For the upper capillary in Figure 3
with an overpressure of 0·25p.s.i at this temperature, this collapse has been avoided. At the
somewhat larger overpressure of 0·5p.s.i. the upper capillary has inflated dramatically, though
it has not actually “exploded”.

When the temperature is raised to 2225 ◦C, the control capillary closes completely under
the action of surface tension. The smallest overpressure of 0·1p.s.i. is evidently insufficient
to arrest the collapse of the upper capillary. When the overpressure is increased to 0·25p.s.i.,
the hole does not collapse though it is deformed significantly by the action of surface tension.
At the greatest overpressure of 0·8p.s.i. the pressurised capillary has “exploded” and only its
ragged edges (the remnants of the original capillary) remain.

Consider now the results from Subsections 4.5 and 4.6: in 4.5 we saw that the critical
pressure for fibre explosion was given by

po = 2Ufµβ log a

L(e−β − 1)
. (52)

Assuming that (in S.I. units) the viscosity of the glass is given by the Fulcher law (see, for
example [27])

µ = 0·1 × 10−6·24+26900/(T+273)

where the temperature T is measured in degrees centigrade, and that the surface tension of
the glass is γ = 0·3 N/m, (52) gives critical explosion pressures of po = 180·5Pa (T =
1975 ◦C), po = 11·5Pa (T = 2225 ◦C). Evidently these values are far too low, since from
Figure 3 it appears that fibre expansion (but no explosion) takes place at the lower temperature,
whereas fibre explosion takes place for some value of po between 0·25 and 0·8 p.s.i. (i.e.
1724–5516Pa). This disagreement is to be expected since the asymptotics used to arrive at
(52) ignored the contracting effects of surface tension completely and should therefore be
expected to produce an underestimate of the critical pressure.

Let us now use the “small hole” theory of Section 4.6 for comparison purposes. We recall
that the condition for collapse at x = L is given by (44). When we solve (44) numerically
to determine P (and thus po) using the experimental parameters described above, we find
that po = 167Pa ∼ 0·02p.s.i. when T = 1975 ◦C, whilst po = 498Pa ∼ 0·07p.s.i. when
T = 2225 ◦C. These results are much more encouraging, for we see from Figure 3 that
collapse almost takes place at the lower temperature in the control capillary, while collapse
takes place for po = 0.1p.s.i. ∼ 690Pa at the higher temperature.

As noted in Section 4.6 it is harder to propose an “explosion” criterion. It is interesting,
however, to calculate the quantity

po = γ

h10
+ βµUf

L
,

which is the condition that h1x(0) > 0. This is given by po = 873Pa for a temperature of
1975 ◦C and 494Pa for a temperature of 2225 ◦C. Recalling the discussion of Section 4.6, we
expect fibre expansion and subsequent explosion to take place for some hole pressure above
these values of po, and this seems to agree qualitatively with the experimental results. Finally,
it is interesting to calculate the “sensitivity parameter” S that was identified in Section 4.6. We
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Figure 4. Experimental drawing apparatus - schematic.

find that, for the lower of the two temperatures, this has the value 1·15. This is order unity and
so some control might be expected to be possible and the fact that no explosion or collapse
took place during the experiment is consistent. For the higher of the two temperatures, how-
ever, we find that the the value of the sensitivity parameter is about S = 18. The conclusions
of Section 4.6, namely that this should lead to severe sensitivity, are well confirmed when we
observe from the lower pictures in Figure 3 that there seems to be only a fraction of a p.s.i.
separating conditions that cause either complete collapse and explosion.

6.1. THEORY/EXPERIMENTAL COMPARISON FOR CAPILLARY SIZE

Some further experiments were then carried out with the aim allowing a more detailed and
quantitative comparison with the theory. For these experiments, the silica capillary preform
used had an OD of 28mm and an ID of 24mm. The glass used was Suprasil F300, a commer-
cially-available high-quality low-impurity grade of silica commonly used for the production
of low-loss optical fibres. Results from these experiments were described in more detail in
[32], and are reviewed here for completeness.

A graphite furnace was used to heat the preform in a commercially-available 5m fibre
Heathway drawing tower. The heating took place over a 3cm “hot zone”. For the purposes of
comparison, we will assume that a constant temperature was maintained throughout this hot
zone. The preform, whose top end was open to the atmosphere so that no internal hole pressuri-
sation was present, was fed into the furnace at a constant feed speed and the final diameter of
the drawn capillary was measured using a laser diameter gauge positioned approximately 1m
below the furnace. The draw speed was controlled by passing the drawn capillaries through a
pair of wheels rotating at a set speed whose surface is designed to avoid slippage. A schematic
of the drawing arrangement is given in Figure 4.

A total of 24 experimental runs were carried out, during which the feed speed was varied
between 2 and 8 mm/min and the draw speed between 0·6 to 1·2m/min. Furnace temperatures
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of 1900, 1950 and 2000 ◦C were used. Once any particular combination of drawing conditions
was set, the process was allowed to stabilise before the final dimensions of the drawn capillary
were measured. Because the distance between the drawing wheels and the neck-down region
was relatively large, the system took less time to stabilise at lower temperatures as a result
of the rapid increase of viscosity with reduced temperature. After drawing, the OD of each
capillary was measured both using the diameter gauge and a micrometer. The final IDs were
extracted from measurements made using a standard optical microscope. The law of mass
conservation provided an extra check on the validity of the ID measurements; this requires
that, in steady state, the feed and draw volume fluxes should be equal. The experimental results
exhibited only small deviations from this requirement, with a maximum error in volume flux
of just over 5%; however, the error was less than 2% for the majority of the experiments. This
indicates not only that the final capillary dimensions have been measured accurately, but also
that sufficient time has been allowed for the process to stabilise.

After completion of the experimental programme, a comparison was made with the theo-
retical predictions of (35) and (36). For comparison purposes, we set x = L = 3cm in (36)
and used the known experimental values for Uf , Ud , h10 and h20. The remaining required
piece of information, namely the ratios γ /µ at the furnace operating temperatures, does not
appear to be available for Suprasil F300. It is also the case that, while the three drawing
temperatures are likely to be accurate relative to each other, it is possible that they may suffer
from an absolute temperature offset by as much as 50 ◦C. For each furnace temperature, we
therefore fitted the theoretical model to the experimental data by choosing the parameter γ /µ;
the relevant values for 1900 ◦, 1950 ◦C and 2000 ◦C were 1·61×10−6m/sec, 3·85×10−6m/sec
and 1·12 × 10−5m/sec, respectively.

The final measured outer diameters of the drawn capillaries are shown (symbols) as a
function of the draw speed Ud in Figure 5. The theoretical predictions from (36) are indicated
by lines. The corresponding results for the inner capillary diameters are shown in Figure 6.
In each case, the comparison between the theory and the experimental results is striking,
suggesting that the theoretical model is a powerful predictive tool for capillary drawing.

Not surprisingly, higher temperatures, smaller feed speeds or larger draw speeds all lead
to smaller final capillary dimensions. Note that at larger feed speeds the final dimensions are
more sensitive to the draw speed than at smaller feed speeds. For the range of experimental
conditions considered here, the degree of capillary collapse is relatively small in each case.
(In the most extreme case the final ID/OD ratio was 0·74, compared to its initial value of
24/28 ∼ 0·857.) Further analysis of the data reveals that the degree of collapse is a strong
function of feed speed, with the greatest amount of collapse occurring at the lowest feed speed,
but is insensitive to draw speed.

7. Conclusions and discussion

In the above study we have been able to use asymptotic analysis to propose leading-order
equations for the drawing of a capillary, the process that provides the raw material for holey
fibres. This may be regarded as the first step towards a complete quantification of the process
of drawing arbitrarily-shaped holey fibres. We have shown that our model gives excellent
agreement with a range of experimental data, which gives us confidence in its powers as a
predictive tool. As well as predictions in the form of data, however, it also provides some
practical guidelines useful in the design and control of the manufacture of capillaries.
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Figure 5. Experimental results (symbols) and theoretical predictions using (36) (lines) for capillary outer
diameters.

Figure 6. Experimental results (symbols) and theoretical predictions using (36) (lines) for capillary inner
diameters.

It would be useful ultimately to be able to predict the drawing process for microstructured
fibres with arbitrary cross-sectional profiles. The asymptotic techniques outlined above sign-
post a route forward for accomplishing this. Of course, other techniques such as homogenisa-
tion could also be used to relate results for capillaries to to those for more complicated, but
regular structures.

Another way in which the model could be refined would be to include a more detailed
model of the temperature and heating effects during the process of drawing. Bearing in mind
the number of complicated transport processes that are involved and the difficulties of quan-
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tifying them, however, this is likely to prove difficult. The model developed above allows the
inclusion of a known furnace temperature profile, and this is a relatively simple parameter to
measure.

It is worth making the point that detailed and rigorous comparison of the theory with
experimental results is greatly complicated by the lack of suitable data regarding the surface
tension and viscosity of glass. Although well-fitting formulae are available for the viscosity
of the more common glasses as a function of temperature (see, for example [33, Chapter 6])
there seems to be a general dearth of such data for higher-quality glasses, perhaps because
such information is regarded as being proprietary. It may prove difficult to test the theory
severely if such values never become available, though one valuable use of models such as the
one developed above is to independently determine crucial parameters such as these.
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